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Stimulation in one sensory modality can affect perception in a separate
modality, resulting in diverse effects including illusions in humans. This
can also result in cross-modal facilitation, a process where sensory perform-
ance in one modality is improved by stimulation in another modality. For
instance, a simple sound can improve performance in a visual task in both
humans and cats. However, the range of contexts and underlying mechan-
isms that evoke such facilitation effects remain poorly understood. Here,
we demonstrated cross-modal stimulation in wild-caught túngara frogs, a
species with well-studied acoustic preferences in females. We first identified
that a combined visual and seismic cue (vocal sac movement and water
ripple) was behaviourally relevant for females choosing between two court-
ship calls in a phonotaxis assay. We then found that this combined cross-
modal stimulus rescued a species-typical acoustic preference in the presence
of background noise that otherwise abolished the preference. These results
highlight how cross-modal stimulation can prime attention in receivers to
improve performance during decision-making. With this, we provide the
foundation for future work uncovering the processes and conditions that
promote cross-modal facilitation effects.
1. Introduction
Sensory perceptions in one modality are routinely impacted by stimulation in
other modalities [1,2]. For instance, interactions between vision and hearing
create many illusions in humans [3–9]. The sources of cross-modal interactions
are myriad, including interactions in primary sensory processes as well as
higher level cognitive processes [3]. While most research has focused on
visual/auditory interactions, these effects likely occur across all sensory modal-
ities. For instance, tactile stimulation can affect visual perception, and odours
can affect tactile perception [10,11].

Stimulation in one modality can improve performance in a separate modality.
For instance, visual input improves noisy speech comprehension [12,13]. In
addition, hearing the word for an object can allow participants to visually
detect an otherwise unseen object [14]. However, the cross-modal stimulus
need not always be so relevant. Simple auditory stimulation can reveal otherwise
unseen images when temporally and spatially aligned to the image presentation,
and vice versa [15,16]. Even a non-spatial auditory ‘pip’ can improve perform-
ance on a visual search task [17,18] and a light flash can improve detection of
low-intensity sounds [19]. Here, we refer to the process in which stimulation in
one modality improves performance in a separate modality as ‘cross-modal facili-
tation’, a term that has been used to describe a variety of processes, often akin to
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this phenomenon [2,20–22]. Many aspects of when and how
cross-modal facilitation occurs remain unexplored.

Investigations in non-human animals have revealed simi-
lar cross-modal impacts on perception and identified some of
the neuronal processes responsible. Pioneering studies in
owls and cats revealed extensive brain areas that respond to
and integrate stimuli from multiple modalities [23–26]. Cats
demonstrate a behavioural result similar to humans, in
which a spatially and temporally aligned auditory stimulus
enhances performance on a visual detection task [27,28].
However, little is known about the range of conditions and
species where cross-modal facilitation occurs, particularly
using naturalistic stimuli and non-domestic animals.

The túngara frog offers an excellent system to study cross-
modal facilitation. In this species, groups of males call from
shallow pools at night to attract female frogs, which also
attracts predators and parasites [29–31]. Males can produce
simple calls consisting of a downward sweeping whine, or
complex calls which consist of a whine followed by one or
more short chucks. Across decades of two-choice phonotaxis
experiments, wild-caught females have shown consistent pre-
ferences for a speaker playing a complex call over a simple
call [32]. To produce these calls, males inflate and deflate a
large vocal sac, creating a temporally aligned visual cue as
well as a water surface ripple ‘seismic’ cue [33]. These
additional cues can be used by female frogs [34–37], generally
enhancing preference. Integration of the acoustic and visual
components can also occur nonlinearly and create emergent
percepts [36,38,39]. However, how these stimuli may promote
cross-modal facilitation remains largely unknown.

Here, we demonstrated that cross-modal facilitation could
improve performance of a biologically relevant auditory
choice task in the túngara frog. We first investigated what
type of cross-modal stimulation was behaviourally relevant
for female frogs. We then found that, when we used acoustic
noise to abolish the preference for a complex call, cross-modal
facilitation restored the acoustic preference.
2. Methods
(a) Animals
We collected pairs of túngara frogs (Engystomops (=Physalaemus)
pustulosus) from ephemeral pools in and around Gamboa,
Panamá shortly after sunset between September and December
2021. Phonotaxis experiments were conducted with females in
a laboratory at the Smithsonian Tropical Research Institute.
Frogs were acclimated to darkness in a cooler for at least
30 min prior to testing, and toe clipped following testing to
ensure that frogs were not recaptured and tested again. All
procedures were approved by the University of Texas at Austin
(IACUC: AUP-2019-00067), STRI (IACUC: 2018-0411-2021) and
the Ministry of the Environment of Panamá (MiAmbiente:
SE/A-40-19). We used 38 frogs in experiment 1, and 50 frogs in
experiment 2. Following testing, all frogs were returned to the
site of capture within 24 h.

(b) Apparatus
Experiments were conducted in a wading pool inside a dimly
lit acoustic chamber (figure 1a). For acoustic stimulation, we
placed speakers in holes cut in the side of the pool, directly
above the water line. For visual stimulation, we attached three-
dimensional-printed model frogs (RoboFrogs [34]) in front of
each speaker (figure 1b,c). The RoboFrogs housed a silicon
vocal sac replica that we dynamically inflated simultaneously
with the acoustic call for trials with visual stimulation. For seismic
stimulation, we placed custom-built ripple generators on elevated
platforms in front of each speaker. The generator rested just below
the water surface and created a ripple simultaneously with the
acoustic call for trials with seismic stimulation. Finally, a pair of
speakers on the wall above and behind the call speakers were
used for continuous playback of green noise stimuli on trials
with noise. See electronic supplementary material for additional
details on the materials and methods used.

(c) Experimental stimuli
For experiment 1, the speakers alternated broadcasting the same
complex call stimulus (whine chuck) on a 1.2 s loop. Each female
was tested in three conditions: visual, seismic and visual + seismic.
In each condition, the call from one speaker (randomly assigned
each trial) was paired with the dynamically inflating vocal sac
of a RoboFrog (visual), the generation of a ripple (seismic) or
both (visual + seismic).

For experiment 2, speakers again alternated broadcasting call
stimuli on a 1.2 s loop. One speaker (randomly assigned each
trial) played a simple call (whine) and the other played a com-
plex call (whine chuck). The whine portion of both stimuli was
identical. Each female was tested in four conditions: acoustic,
trimodal, acoustic + noise and trimodal + noise. In the acoustic
condition, no other stimuli were presented besides the calls. In
the trimodal condition, the calls from both speakers were
paired with a simultaneous visual and seismic cue. These two
conditions were repeated in the presence of continuous playback
of green noise for the acoustic + noise and trimodal + noise con-
ditions. The duration of both the visual and seismic stimuli
was based on a simple call (whine) and was identical regardless
of the acoustic stimulus with which it was paired (i.e. the visual
and seismic stimuli gave no indication of what acoustic stimulus
played from the speaker).

In both experiments, the order of conditions was randomly
assigned to each female.

(d) Phonotaxis testing
We conducted phonotaxis experiments using standard protocols
in this system [32,35]. In brief, each female was exposed to that
trial’s stimuli from the starting platform for 2 min before the
restraining cage was lifted. Experiments were monitored live
and terminated when the female made a choice by remaining
in the ‘choice zone’ near one speaker for at least 4 s or failed to
choose after 10 min elapsed (foul out). Foul out trials were
removed from analysis. She was then placed back on the starting
platform and the next trial was started. The latency to respond
was recorded (we did not detect any significant differences in
latency across conditions; see electronic supplementary material).

(e) Statistics
All analyses were conducted in R. For each condition, comparisons
to chance were conducted using binomial tests. Because the same
females were used across conditions, we compared conditions
using generalized linear mixed effects models (GLMMs) with
frog ID as a random effect and a binomial link function using
the ‘lme4’ package [40].
3. Results
(a) Experiment 1
We used a two-choice phonotaxis protocol in a large pool of
water where both speakers broadcasted the same complex
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Figure 1. (a) Experimental set-up. (b) RoboFrog with an inflated silicone vocal sac. (c) The RoboFrog controller. See methods and electronic supplementary material
for additional details.
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call, and we randomly paired one speaker with a dynamic
visual, seismic or combined stimulus on each trial (see
Methods). By presenting each cue in isolation and combined,
we discovered that only the combined stimulus with both the
visual and seismic cue evoked a preference reliably different
from chance (binomial test: 25 out of 35; p = 0.0167; figure 2a).

(b) Experiment 2
We next asked whether cross-modal stimulation could
enhance auditory discrimination. We capitalized on the
reliable and natural acoustic preference in túngara frogs for
a complex call over a simple call [32], which we reproduced
in an aquatic arena for the first time (binomial test: 38 out
of 48; p < 0.0001; figure 2b). Next, we paired both speakers
(one broadcasting a simple call, the other broadcasting a com-
plex call) with the same combined dynamic visual and
seismic cues, simultaneously with the acoustic stimuli, and
found that preferences remained stable and high (binomial
test: 40 out of 50; p < 0.0001; figure 2b). Note that the visual
and seismic cues were identical at both speakers, providing
no information to the females about what acoustic stimulus
was playing from each speaker. Given the results of Exper-
iment 1, we used only the combined stimulus to ensure
that the stimulus was perceptible and behaviourally relevant
for the female frogs. Then, we added green background noise
(see electronic supplementary material) at a volume equal to
the call stimuli at the starting platform, which was sufficient
to abolish the acoustic preference for a complex call (binomial
test: 26 out of 50; p < 0.8877; figure 2b). Finally, we found that
adding the cross-modal stimuli to both speakers in the pres-
ence of noise was sufficient to rescue the preference (binomial
test: 36 out of 48; p = 0.0007; GLMM: p < 0.02 for all pairwise
comparisons with noise only condition; figure 2b).
4. Discussion
Here, we demonstrated cross-modal facilitation in a frog,
where the presence of visual and seismic stimuli rescued an
auditory preference in the presence of noise. This finding is
reminiscent of cross-modal facilitation in other domains, par-
ticularly the finding that visual cues improve noisy speech
comprehension [12,13]. However, it is important to note that
in the current study, the identical visual and seismic stimuli
were present at both speakers, and thus could not bias
decision-making on their own. Rather, the mere presence of
these additional stimuli caused female frogs to act on the
acoustic differences between two stimuli, despite the presence
of noise that previously abolished the acoustic preference.
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Figure 2. (a) A bar graph from experiment 1 demonstrating that the combined visual and seismic stimulus causes the largest effect. The y-axis indicates the
percentage of females that chose the multi-sensory stimulus over the unisensory stimulus. For all conditions, an identical whine chuck (complex call) was
played from both speakers. (b) A bar graph from experiment 2 depicting significant cross-modal facilitation. The y-axis indicates the percentage of females
that chose a whine chuck (complex call) over a whine (simple call). For all conditions, the only difference between the choices was in the acoustic modality.
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from chance (50% dashed line). Asterisks with horizontal lines indicate significant differences between conditions from GLMMs. Numbers at the bottom of each bar
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The processes governing cross-modal facilitation remain
poorly understood and are likely complex. The related
concept of multi-sensory integration, which can enhance
overall performance, has received extensive theorizing
[1,41,42], but how stimuli can improve discrimination or
detection in a separate modality has received considerably
less attention. From human studies, it has been hypothesized
that hearing a word primes subjects to expect particular
shapes, and thus participants can more easily identify those
objects in a visual detection task [14]. Cross-modal facilitation
could also occur from one stimulus improving attention to
another modality. For instance, an acoustic cue will improve
visual detection in humans and cats, but only when spatially
and temporally aligned to the visual stimulus [15,20,27,28],
and an acoustic ‘pip’ can cause a temporally aligned visual
stimulus to ‘pop’ out [17,18,21]. In particular, cross-modal
input may improve selective attention for the especially
relevant aspects of stimuli in another modality [43]. More
generally, any cue that provides temporal or spatial infor-
mation to a receiver can help unmask stimuli from noise.
We hypothesize that these processes occurred in our exper-
iments with túngara frogs, where cross-modal stimuli prime
females to temporal and spatial aspects of the acoustic
stimuli. Indeed, previous research on multi-sensory prefer-
ences in female túngara frogs has found that the temporal
and spatial alignment of the visual and acoustic stimuli are
important for whether females prefer or even recognize the
visual stimulus [38,44,45].

Within the vertebrate brain, the optic tectum (OT; superior
colliculus in mammals) is a region that has been identified as
a key area for multi-sensory integration in multiple taxa as
well as for goal-oriented movement [23,25,46–51]. Electro-
physiological results in the superior colliculus of cats closely
match behavioural responses during cross-modal facilitation
when auditory cues improve visual detection [27,47,52],
suggesting that the OT could also be important for the
cross-modal facilitation we observed in a frog. Indeed, other
species of frogs with ablations to the OT fail to respond to rel-
evant visual motion [53,54]. These results highlight that cross-
modal effects can appear without a mammalian cortex. Given
that multi-sensory integration occurs in invertebrates, we
believe that cross-modal facilitation effects are likely, indicat-
ing that other, radically different, neural architectures can
produce such effects [55–57].

Our results have important implications for sexual signal-
ling, mate choice and multi-sensory processing in frogs.
Multi-sensory integration of acoustic and visual components
has been shown across numerous frog species [58–64]. The cur-
rent study indicates a novel importance for water surface
ripples in mate choice. In addition, our data suggest that
cross-modal facilitation can serve to maintain species-typical
preferences for complex calls in noisy conditions, an important
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task for many species to solve [65]. Frog-eating bats also attend
to all three components tested here [66–68], and future work
will be essential to understanding how cross-modal effects
might impact predation risk and calling behaviour.

Overall, we demonstrate that visual and seismic stimuli
can cause cross-modal facilitation in a naturalistic auditory
choice task. This is a special case of the general theory that
multi-sensory signalling leads to enhanced performance in
animal communication [69]. However, overstimulation in
one modality can also reduce performance in another
modality, leading to cognitive overload [70], a process well
understood by drivers who turn the radio down when park-
ing the car. Understanding where this line is between
enhanced performance and cognitive overload, as well as
how this line varies across different receivers, provide
intriguing avenues for future inquiry.
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